trank: with smagth hyaline spicules boaring pecular digitiforn terminal processes and thowing very characteristie amulations, especially near the en lo.

Locality. Cheval Paar, S.E. of Cevlon, 6 fathoms.

EXPLANATION OF PLATE XYII.

Fiq. 1. Futicularia Herdmani, whole colent. ni tural eize.

Fig. 4. Spicule of the contical laver cr cuticle.
Fig. 5. Sriculas of the hodr-parenchorina.
Fig. it. spisules of the irumb.

LXIVIII.-Natural History Notes from the R.I.M.S. Ship 'Inrestigator,' Capt. T. H. Heminy, R.N., commanding.Series III., No. 9. On a neve epecies of the Dorippoid Genus Cymonomus from the Andaman sea, considered vith reference to the Distribution of the Dorippidæ; with some Remarks on the allied Genus Crmonomops. By A. Alcocs, M.B., LL.D., F.R.S., Superintendent of the Indian Museum and Professor of Zoology in the Medical College of Bengal.

> [Plate ITIII.]

Content:-

1. Cymomomus and the Iorippida.

丷. Cymoncomus chasactorized. anll C: anzamaricus distincrui-hed and

 Geatra.
4. Remarlas on the G \div nus Cymonomerps.
5. List of thこ עorippido.

1. Ctuonotuts and ife Doztppides.

The small blind deep-sea crabs of the genus Cymonomus hare, in the "Quarterl? Journal of Microscopical Science' for December 1903 , formed the sulject of a paper, by Professor Pay Lamkester, of much interest both biological and taxonomic; so that the discorery of a representative of the genus in the Andaman Sea mar, perhaps, be thought worthy of indeperdent notice, enpecially as it inrites zoogeograplijeal inquiries that seem to deerve consideration.

Cymonomus belongs to the Osy-tome family Darippidxa primitire fataily. in the trpicsi mender of which, as in
the still more primitive Dromiacea, the separation of the orbital and antemmlar fosse is very incomplete, and the antenna is large and the elements of its peduncle are umsually distinct ; and in which also, as in many of the Dromides, the last two pairs of thoracic appendages are subcheliform and rednced in size, have a strong dorsal eleration, and are often used for holding some kind of protective rovering-such as a valve of a Lamellibranch shell, a wormtube, a water-logged picce of drift vegctation, or sometimes an inert commensal-over the back, the habitindicating a passive disposition and a sceluded life.

The family Dorippidre at present embraces 10 genera and perhaps 50 recent species, many of which, in conformity with a well-established " law" applicable to primitive forms, have been driven into the depths of the sea.
[I must here remark that I do not include the genus l'alicus, Philippi (= Cymopolia, Ronx), with the Durippidæ, although it was so placed by H. Milne-Edwards and is so retained by Bourier. Palicus seems to me to be an aberrant Grapsoid. It may be added that this exclusion in no way affects the question here considered, since in the matter of geographical distribution Palicus presents no points of disagreement.]

2. Cymonoues characterized, and C. andamavicts 1!sTINGUISILED AND DIFFERENTIATED.

Cymonomus, A. Milne-Edwards.

Cymonomus, A. Milne-Edwards, Bull. Mus. Comp. Zool. Harvard, viii. 1, 1880, p. 26 ; Milne-Edwards of Bouvier, Crust. Décap. 'Hirondelle ' (Monaco, 1894), p. 57, and Mem. Mus. Comp. Zool. Harvard, xxrii. 1, 1902, pp. 72, 80 ; Bonvier, Bull. Soc. Philom. Paris, (8) ix. 1898, p. 59 ; Young, Stalk-eyed Crust. W. Indies, icc. 1900, pp. 321, 323; Lankester, Quart. Journ. Mier. Sci., Dec. 190:3, p. 437.
Carapace square or squarish, not concealing the anterior segments of the abdomen; with the regions faintly defined, except the cardiac and postgastric, which are very distinet.

The front forms a rostrum, and the orbito-antennal border is prominent beyond the antero-lateral angles of the carapace ; apart from this there are no indications of orbits or antennular fosse.

The eve-stalks are either fixed or have their mobility diminished, and the eyes are umpigmented and vestigial.

The antenmules are large and unconcealed. The antemnal peduncle is not hidden and its renal tuberele is particularly prominent.
'The buceal cavern is large and square ; its roof is high
and is not well differentiated from the receding epistome, so that in an end-on view it is widely open, although ventrally it is closed by the external maxillipeds. The efferent branchial channels are separated, so that the endopodite of the first maxillipeds (which is so much produced in typical Oxystomes, where the channels lic side by side in the niddle line of the palate) is of no great length, being much shorter than the exopodite.

In the first maxillipeds the epipodite is well developed, in the second it is almost vestigial, and in the third (external maxillipeds) it is small.

The external maxillipeds, though the ischium and merus are rather narrow, almost cover the buccal eavern ventrally, extending beyond the base of the antennal peduncles. The merus is produced far beyond the carpal articulation, so that it is not much shorter than the ischium. The flagellum is large, coarse, and completely exposed. No afferent branchial fissure is apparent between the carapace and the base of the chelipeds, this area being completely closed by the coxa of the external maxillipeds.

The chelipeds are equal, much shorter, and in the male considerably stouter, than the true crawling-legs.

The first and sceond pair of true legs are very long, especially as to the dactylus, and are somewhat compressed; the third and fourth pair are short, and in claw-like dactyli, and have the dorsal eleration u-ual for the family.

The abdomen is large, its breadth, even in the male, corresponding with that of the thoracic sternum ; all its segments are distinct, and the three anterior ones are visible in a dorsal view. In the male there are two pairs of large abdominal appendages modified for sexual purposes; in the female, according to Bouvier, there are only three pairs of abdominal appendages.

The oviducts, according to Bouvier, open on the coxæ of the second pair of true legs.

The branchial formula given by Bouvier for the European and West Indian species, to which also the Indian species conforms, is as follows :-

Somites and their appendages.	Podobranchix.	Arthrobranchiæ.	Pleurobranchix.	Total.
VII. (1st maxillipeds).	epip. (large).	epip.
VIII. (2nd \quad,).	restigial epip.	\cdots	.	vest. epip.
IX. (3rd ${ }^{\text {d }}$	epip. (small).	2	.	$2+$ ерір.
X. (chelipeds)		2		の
XI. (lst true lega)	.	.	1	1
	3 ¢p.	4	1	it:)

Cymonomus andemanicus, sp. n. (Plate XVIII.)

The entire surface of the body and of all the exposed parts of its appendages, except the terminal joint of the autemular peduncles, is fincly frosted.

Carapace slightly, though manifestly, broader behind than in front, without any marginal spinules; the lateral borders are ill-defined posteriorly, and the posterior border is concare in the middle line; the usual regions and furrows are rather faintly indieated.

Rostrum triangular, acute, reaching to the middle of the eye-stalks : the frontal border on cither side of it is advaneed beyond the antero-lateral angles of the earapace, but the subantennal tooth, which is so conspicuous in C. quadratus, is small and quite invisible in a dorsal view, though plain enough in a side view.

The eye-stalks, which are rigidly fixed, divergent, and slightly curved, are devoid of hairs and enlarged spinules and do not reach the tip of the antepennltimate joint of the antemal peduncle; the eye is a small, smooth, mpigmenterl, subterminal patch.

The antemmes are stont, and their peduncle is more than three-fourths the length of the carapace.

The antenne are shorter and slenderer than the antennules; their peduncle does not reach the terminal thiril of the second joint of that of the antennules, and none of its joints are spinose; their lash is rather more than half the length of the carapace.

The gap between the epistome and the anterior end of the external maxillipeds is singularly wide and almost subtubular; on either side of the epistome is a spimule which may, perhaps, serve to separate the inhalant from the exhalant currents. The epipodite of the first maxillipeds is broadly foliaceous.

The chelipeds of the male are equal, about half again as long as the earapace, and not very massive; a spinnle at the imer angle of the wrist and a few on the upper border and outer surface of the hand are enlarged ; the hand is longer than the ischium and merus combined, the fingers are slightly longer than the palm and their cutting-clge is entire.

The first pair of true legs are about 3 times, the second pair about $3 \frac{3}{4}$ times the length of the carapace ; their dactyli are subfalcate, that of the first pair contributing decidedly less, and that of the third pair a little more, than one third the total length of the appendage. The third pair of lers
are about once and a half, the fourth pair about onee and a quarter, the length of the earapace, the dactylus in both having the form of a small claw.

The length of the carapace is 8.5 millim., the breadth posteriorly 8 millim., and the breadth across the anterolateral angles 7 millim.

A single specimen was taken just inside the Andaman basin, at ' Investigator' Station $32 \cdot 2$: lat. $11^{\circ} 26^{\prime} 30^{\prime \prime}$, lons. $92^{\circ} 53^{\prime} 45^{\prime \prime}$, depth 378 fathoms; hottom green mud with Foraminifera. Unfortunately the bottom-temperature was not recorded, but from previous observations we can infer that it was between 47° and 48° Fahr.

The chicf differences between C. andamanicus on the one hand and the Atlantic species C. granulatus and C. quadratus on the other are as follows :-

The carapace is less square, its lateral borders being distinctly, if slightly, convergent anteriorly; its cervical and branchial grooves are somewhat fainter dorsally ; and there are no spines at its antero-lateral angles. The rostrum also is broader and much less prominent.

The eye-stalks are quite immovable, and, though microscopically granulose, are not at all spinous.

The cutting-edges of the fingers of the chelipeds are not serrated, but, to the naked eye, are quite entirc.

From C. granulatus the present speeies is further distinguished by the much smaller smbantennal tooth at the outer angle of the buceal cavern; and from C. quadiatus by the fact that the outer border of the antepenultimate joint of the antemal peduncle is not sharply serrated.

3. Geographical Distribution of Cfmonomers and other Dohippoid Genera.

The singular sort of residual distribution of Cymonomus requires to be explained, but as it fairly well exemplifies that of the family, it may be considered with that of all the other genera of the group, in the way that the subject has already been presented by Professor Boxvier, in his paper on the classification, origin, and distribution of the family, published in the 'Bulletin de la Société Philomathique de Paris' for 1896-1897, pp. 67-69.

1. Dorippe, Fabr.-This genus, which is composed of 12 or 13 recent species, belongs to the fauna of the shallow water, not having hitherto been found outside the 60 -fathom line. Its headquarters appear to be in South-eastern and

Ann. \& Mag. N. Ilist. Ser. 7. Vol. xv.

Eastem Asia, from the Buy of Bengal to Japan and Anstralia. On the other hand, two species ocenr in the Mediterranean, and one off the West Coast of Africa (Cape Verde to the Cong()). One of the commonest Indo-Pacific species (D). dorsipes, L.) is also met with off the east coast of Alrica.
2. Eriusa, Ronx.-This genus consists of 14 species, and thongh fomb in the Mediterrancan and in some parts of the Western Hemisphere, in quite shallow water ($13-26$ fathoms), (ommonly lives far down the snbmarine slopes between 200 and 1200 fathoms. The species are found off the west coast of Tropical America, from the (iulf of California to the Cocos Whands (lanama): in the region of the Gulf of Mexico, from Florida to the Autilles, and also further north off the south coast of New England; in the Eastern Atlantic in the neighbonrhood of the Azores and Canaries; in the Mediterrenean Sea and its Atlantic gate : and in Oriental Seas, from the Arabian Sca to Fiji.
3. Eithusina, S. I. Smith.-Seven (or six) species are included in this genus and, among crabs, ther are the deepest dwellers of any known, going down to abysses of nearly 2200 fathoms, although one-E. Smithiana, Faxon-has been taken in 131 fathoms. They have been dredged off the tropical Pacific coast of Ameriea, between the Galaparos and Coens and the mainland ; off the east coast of the Northern United States of America, as far as $38^{\circ} 53^{\prime} \mathrm{N}$.; in the neighbourhood of the Azores, of the western coast of Morocea, and of the Cape Verde Islands: in the Arabian and Andaman Seas, and in the depths of the land-bound basins of the East Indian Archipelago; and off Japan, in $34^{\circ} 37^{\prime}$ N. According to Faxon, two of the Eastern Pacific species are identical with two from the western confines of the same ocean.
4. Tymolus, Stimpson, is represented by a single species found in shallow water off Japan, abont lat. $42^{\circ} \mathrm{N}$. The genus is imperfectly known, hit it appears to comncet Dorippe and Ethusa with C'yclodorippe and Cymonomops.
5. Cychonoripre, A. Milne-Edwards.-This genus for the present embraces five sublittoral species, of which three occur in the West ladian region, from Florida to Trinidad, in 50 to 35% fathoms, while the other two are found in Japan between 35 and: 200 fathoms. According to Bonvier, two of
the spreies ruferred by their anthors to this gemus-mamely, C. dromioides, Ortmam, from Japan, and C. granulata, Rathbun, from off the island of Trinidad-may possibly belong to the next.
6. Clifthrocerus, Bonvier, at present stands for two species from the West Indies and adjoining coast of North America as far as 32° N., and inhabiting the sublittoral zone at a depth of 50 to 262 fathoms.
7. Cymonomus, A. Milue-Edwards.-Perhaps six species may be assigned to this gemus, their bathymetrical range being from 101 to 1380 fathoms. Their area of distribution includes the Caribbean Sea, the eastern part of the North Atlantic from Iceland to the Arguin Bank off the Sahara (about $21^{\circ} \mathrm{N}$.), the western part of the Mediterranean Sea, the east coast of Equatorial Africa, and the Andaman Sea.
8. Cymopolus, A. Milne-Edwards, includes two species, one from 75 fathoms off the coast of Florida, the other from the West Indies (Montserrat), 148 fathoms.
9. Corycodus, A. Milne-Edwards, receives a single species from the Went-ladian region and dredged in 175-250 fathoms.
10. Cymoxomops, Alcock, rests upon a single species found in the land-locked hasin of the Andaman Sea at 265 and 405 fathoms.

The foregoing summary of the facts of distribution seems to me to support the opinion of Bonvier that the family Dorippidx "appears to have had its centre of origin and dispersal in the Caribbean region." It further seems to suggest an answer to the question whether the dispersion has been westwards by way of the Pacific or eastwards by way of the Atlantic. Of any emigration westwards through the Pacific we find very little evidence, while in the other direction the gromping of the family, on the one hand, in what may roughly be calld the Panama and West-Indian region, and, on the other hand, in the seas of the Oriental region (India to Japan and Australia), with a halfway-house in the eastern part of the North Atlantic and the Western Mediterranean, seems capable of only one interpretationnamely, an open-sea connexion in the direction indieated by
the halfway-house at a time when the primitive crabs, which are now represented by a furtive remmant, were a more Howrishing stock.

1 may mention that this interpretation is confirmed by the distribution (tabulated in my 'Catalogue of Brachenra Primigenia in the Indian Musenm') of three other families of pimitive crabs, namely the Homolodromidae, the Homolidee, and the Latreillide; and though I must add that it finds no particular corroboration in the distribution of the 1)ymomenider and Dromide (which are also primitive groups related to the Homolide), I may suggest, as a necessary explanation, that the Dynomenide and Dromide are very largely shallow-water and littoral forms, whose distribution may have since been influenced by causes which would not affeet species that had become addapted to deep-sea conditions.

1 may also refer for corroborative evidence in this connexion to my paper in the 'Amals' for October 1904 on the distribution of the Amphibians of the family Caciliidse, in whichatso the suggestive geographical relations of the Indian sublittoral Paguride are tabulated.

4. Remarks on the Genus Cymonomops.

In the 'Bulletin de la Société Philomathique de Paris,' 8 sér. tom. ix. (1896-1897), and again in the Report on the Dromiacea and Oxystomes dredged ly the 'Blake,' published in 190:, Professor Bouvier, who conld not have seen my paper on Indian Oxystomata, published in the 'Journal of the Asiatic Society of Bengal ' for 1896, complains that the affinities of (ymonomops have not been made clear ; so I take this opportmity of re-characterizing this genus and of adding the necessary information regarding the structure of its mouth-parts, the distribution of its gills, and the position of the openings of the oviducts.

Crmonomors, Alcuck.

(ymonomops, Alcock, Aun. \& Mag. Nat. Hist., May 1894, p. 406, and Journ. Asiatic Soc. Bengal, vol. lxi. pt. 2, no. 2, 1890, p. 2eti; Bonvier, luc, cit.

Carapace almost semicirenlar in outline, not concealing the anterior abdominal terga, its grooves and regions fairly well defined.

The front consists of a narrow rostrum, not much breaking the gencral contonr of the carapace and ending in two teeth,
between and beyond which can be seen, in a dorsal vicw, the roof of the much-produced efferent branchial canal. On either side of the rostrum are two teeth which form the dorso-lateral walls of the common orbito-antemmular fossæ.

The eye-stalks are slender and freely movable; the eyes are almost without pigment.

The antemules, which are larger than the antenne, are not entirely concealed in flexion.

The buecal cavern is of great length, its median efferent branchial canal, which is remarkably well defined, being prolonged anteriorly over the epistome and beyond the ro-tum; it is closed ventrally and anteriorly, except as regards the tip of the branchial canal, by the long narrow external maxillipeds.

In the external maxillipeds the merus is about three fourths the length of the ischium, the flagellum (which is completely exposed) articulates near the middle of the merns and well inside its edge, the exopodite (which is broad and nonflagellate) is hardly longer than the ischium, and the epipodite is absent or minutely vestigial.

In the first maxillipeds the endopodite is nearly twice as long as the exopodite and is produced as far as the end of the efferent branchial canal, to which it forms a floor, as in typical Oxystomes ; and the epipodite is large and foliaccous.

In the second maxillipeds the cxopodite has the form of a lash and is much longer than the endopodite, and the epipodite also is of great length.

No afferent branehial fissure is visible between the carapace and the base of the chelipeds.

The chelipeds are equal and are mueh shorter, and in both sexes much stonter, than the leg.s.

The first and second pairs of true legs are stoutioh and are of very great length, especially as regards the merus. The third and fourth pairs of legs are short, almost filamentons, and have the usual dorsal elevation.

The abdomen in the male is small, is not so broad as the corresponding part of the thoracic stermm, and carries two pairs of large appendages modified for sexual purposes; in the female it is large and broad and carries four pairs of appendages; in both sexes only six segments ate distinguishable.

The oviducts open on the coxae of the second pair of true legs.

The branchial formula is as follows :-

Somites and their appendages.	Podobranchice.	Arthrobranchie.	Pleurobranclice.	Total.
VII. (lst maxillipeds).	epip. (lare)	epip.
VIII. (2nd ,).	epip. (large)	\cdots	.	ерир.
IX. (3rd \quad,).		2	.	2
N. (chelipeds) .	.	2	\because	\because
XI. (lst true leys)	.	.	1	1
XII. (2nd ", ")..	.	.	1	1
	2 ерір.	4	2	$6+2$ ерір.

In addition there are two microscopic filaments, pr bably the vestiges of a podobranch and arthrobranch, on somite VIII.

The genus is represented by a single species (which has becn described in the 'Annals' and 'Journal' above cited, and figured on plate xiv. of the "Illustrations of the Zoology of the 'Iuvestigator' "') from the Andaman Sea, 26z-405 fathoms.

5. List of the Dorippid.ez.

I. Dorippe, Fabricius, Entomol. Syst. Suppl. p. 361 (1793) ;
 M.-Edw. Ilist. Nat. Crust. ii. 154.

1. affinis, Desmarest, Consid. Gén. Crust. p. 13.5 (182.5) $(?=$ lunata, Limn.).-Mediterranean.
2. armata, White, Miers, Amn. © Mag. Nat. Ilist. (5) viii. 1831, p. 269, pl. xv. fig. 4.-Cape Verde to Congo.
3. ustuta, Fabricius, op. cit. p. 3itl, vide Alcock, J. A. S. 13 lxv. pt. 2, 1896, p. 230 . Oriental and Au-tralian.
4. australiensis, Miers, Zool. H.M.S. 'Alert,' pp. 185, 258, pl. xxvi. fig. D.-Australian.
5. callitu, Fabricius, op. cit.p 362 ; M.-Fdw. Hist. Nat. Crust. ii. 157.Mediterranean.
6. dorsipes (Linn.), Miers (Alcock, J. A. S. B. lxv. pt. 2, 1890, p. 277 ; =frascone, Herbst, =quadridens, Fabr., =quadridentata, Edw., = atropos, Lam., = nodulosa, Lam.).-E. Africa to Japin and Australia.
7. facchino (Herbst), De Haan (Alcock, t. c. p. 278 ; =sima, M.-Edw.). -India to China.
8. granulata, De Haan, Faun. Japon., Crust. p. 122, pl. xxi. fig. 2 (1850).-China and Japan.
9. histrin, Nobili, Boll. Mus. Zool. Torino, Dec. 1903, p. 24, and plateSingapore.
10. japonica, v. Siebold, De Haan, l. c. pl. xxxi. fị̆. 1.-Japan.
11. lanata (Linn.), Milne-Edwards, Hist. Nat. Crust. ii. 15.j.-Mediterranean and Atlantic Gate.
12. polita, Alcock .\& Anderson, J. A. S. B. 1xiii. pt. 2, 1894, p. 208, and 1ll. Zool. 'Investigator,' Crust. pl. xxir. fig̣. 4.-India.
13. serdentata, Stimpson, Proc. Acad. Nat. Sci. Philad. (1858) 1859, p. 163.-Jарап.

1I. Ethu'sı, lioux, Crust. Médit. 182̊, pl. x siii.; M.-Edw. IIist. Nat. Crust. ii. 16 I .

1. americanm, A. Milne-Edwards, Bull. Mus. C. Z. Harvard, viii. 1880, no. 1, p. 30 ; Milne-Edwards \& Bouvier, Mem. Mus. C. Z. Harvard, Axvii. no. 1, $190 \pm$, p. 6 ta pl. xiii. figs. 1-t.-Califormia, Florida.
2. andumanica, Alcock, Ann. © Mag. Nat. Mist. (6) xiii. 1894, p. 40.5, and Ill. Zool. '1uvestigator,' Urust. pl. xiv. fig. 8.-Andaman Sea.
3. ciliutifrons, Faxon, 1893, vide Mem. Mus. C. Z. IJarvard, xviii. 189̄, p. 34, pl. v. tig. 3.- Cinlf' of P'anama.
4. hirsuta, McArdle, Anu. © Mag. Nat. Hist. (7) vi. 1900, p. t7t, aud III. Zool. 'Investigatur,' Crust. pl. lxxii. fig. I.- Arabian Sea.
5. indica, Alcock, Ami. \& Mar. l. c., and Ill. Zool. 'Investigator,' C'rnst. pl. xiv. fig. 2.--1 Indian seas.
6. luta, Rath bum, 1893 , vide Faxon, t. c. p. 3.), pl. vi. fig. 1 ($=$ pubescens, Fax.).-Gulf of California; (ocos Island (lanama).
7. muscarone (Herbst), M.-Edw. Hist, Nat. Crust. ii. 162.-Mediterranean ; Canary Islands.
8. microphthalma, S. I. Smith, Iroc. U.S. Nat. Mus. iii. 1881, p. 418.New England; Azores.
9. orientalis, Miers, 'Challenger' Brachyura, 1886, p. 330 , pl. xxviii. fig. 1.-Fiji.
10. p!gmea, Alcock, Am. \& Mar. t. c. p. 406, and Ill. Zonl. 'Inrestigator,' Crust. pl. xiv. fig. 5.-Andaman Sea.
11. rosacea, M.-Edw. \& Bous. I897, vide A. Milue-Edwards \& Bonvier, Crust. Décap., Exp. Sci. 'Travailleur' et 'Talisman,' pt. i. 1900 , p. 26 , pl. iii. fig. 5, pl. x. figes. 5-6.-Canary Islands and N.W. Africa.
12. rugulosa, M.-Edw. \& Bouv. 1897, vide A. Milne-Edwards \& Bouvier, op. cit. p. 24, pl. x. figs. 1-4.- W. Africa.
13. tenuipes, Rathbun, Proc. Biol. Suc. Washington, xi. 1897, pp. 109, 110.- Flurida.
14. truncata, M.-Edw. \& Bouv. 1899, wide A. Milne-Edwards \& Bourier, Mem. Mus. (. Z. Harvard, גxvii. no. I, 1902, p. 69, pl. xiio. figs. 5-8.-W'est Indian region.
III. Ethessina, S. I. Smith, Ann. Rep. Comm. Fish. for lane Decapod Crust. of the 'Albatross,' Wiashington, 1884, p. 349.
15. abyssicola, S. I. Smith, l.c. pl. ii. fie. l.-E.. coast of U.S.A. : Azores, Cape Verde.
16. challengeri, Miers, 'Challenger' Brachyura, 1886, p. B3I, pl. xxviii. fig. 2.-Japan ; Galaparos.
17. desciscens, Alcock, J. A. S. H. lxv. pt. 2, 1896, p. 286, and IIl. Kool. 'Iuvestigator,' Cru*t. pl. Mxxii. fig. :3.-Indian Seas.
18. gracilipes, Miers, op. cit. p. $3: 22$, pl. xxviii. fig. 3.-Oriental; II. coast Tropical America.
19. investigatoris, Alcock, tom. cit. p. 285, and Ill. Zool. 'Investigator,' Crust. pl. lxxii. fig. 3.-Arabian Sea.
20. Simithiana, Faxon, I893, vide Mem. Mus. C. Z. Harvard, x riii. 1895, 1. 37, pl. vi. figs. 2 , 2 u.-Cocos Island (IV. coast Trupical America).
21. talismani, M.-Edw. \& Bonv. 1と97, vide A. Milne-Edwards \& Bonvier, Crust. Décap. 'Travailleur ' et 'Talisman,' pit. i. 1900), p. 30, pl'. iii. fig. 6, pl. x. figs. 9, 10. - Azores; W. coast Mmucen.
IV. Tymoles, Stimpson, l'roc. Acad. Nat. Sci. Philad. (1858) 18:59, p. 163.
22. jupomicue, Stimpson, l. c.-N. Japan.
V. Cymorolus, A. Milne-Edwards, Bull. Mus. C. Z. Ilarvard, viii. 1880, p. 27.
23. asper, A. Milne-Edwards, 18-n ride A. Milue-Edwards \& Bouvier, Mem. Mus, Comp. Zool. xxvii. no. 1, 1sM2, p. 74, ph. xiv. figs. 1-6, pl. xy. fig. T.-Ahtilles.
24. A fyasiziz̈, M.-Edw. \& hour. 1809 , ride A. Milne-Edwards of Bouriar, tom. cit. p. $\bar{i} \&$, pl. xiv. figs. $\overline{-}-9$, pl. xt. figs. 1-6.-Flurida.

YI. Crmonomes, A. Milne-Edwarde, Bull. Mus. C. Z. Harvard, viii. 1880, p. 26.

1. granulatus (Norman), vide A. Milue-Fdwards \& Buavier, Crust. Décap. Exp. Sci. 'Travailleur' et 'Talisman,' pt. i. 1900, p. 34, pl. xi. figs. 5-9.-Ireland to Sahara: W. Mediterramean.
2. Normani, Lankester, Q. J. M. S. vol. xlvii., Dec. 1903, p. 450 , pl. xxxiii. fig. 1, pl. xxxiv. fics. 8,10 - Eastern N. Atlantic.
3. quadratus, A. M-EDdw. 1880, ride A. Milme-Widwards of Bonvier, Mem. Mus. C. Z. Harvard, xxrii. no. 1, 1902, p. 81, pl. xri.West Indian region.
4. 'Valdiria' sp., Lankester, t. c. p. 458.-E. coast A frica.
5. 'Ingolf' sp., Lankester, t.e. p. 459.-S.W', coast of Iceland. 6. andamanicus, Alcock, ante, p. 468.-Andaman sea.
ViI. Coryconts, A. Milne-Edwards, 1880 , citle A. Milne-Edwards is Bouvier, Mem. Mus. C. Z. Harvard, xxvii. no. I, 1902, p. 86.
6. bullatus, A. M.-Edw. 1800, A. M.-Edw. \& Bour. ibich. pl. x.ii.W. Indian region.

Vili, Cyclodorippe, A. Mi.-Edw. 1880, ride A. Milne-Edwards \&Bouvier, Mem. Mus. C. Z. Ifarrard, xxrii. no. 1, 1902, p. 94.

1. Agassiziii, A. M.-Edw. 1880 : M.-Fdw. \& Bour, ibid. pl. xix. figs. 1-7, pl. xx. figrs. 1-3.-Havana.
2. antmaria, A. M.-Edw. 1880; M.-Edw. \& Bour. t. c. p. 99, pl. xix. fig. 8 , pl. xx. figes. 4-12.-Autilles.
3. dromiondes, Ortmann, Zool. Jahrl., Syst. \&c. Abth. ri. 1892. p. ij59, pl. xxri. fig. $\overline{5}$ (? C'y throreerus dromioides ex lousier). - Japan.
4. gramulatu, Rathbun, Mull. Nat. Hist. Iowa, 1898, p. 29:', pl. ix. fig. 1 (? Clythrocerus granulatus ex Bourier).-'Trimidad.
5. uncifera, Ortmann, t. c. p. $\overline{6} 60$, pl. xxvi. fig. 6.-Japan.

LN. Clythrocerts, A. M.-Edw. \& Bour. 1899 , vide A. Milne-Edwards \& Bonvier, Mem. Mus. C. Z. Harrard, xxvii. no. 1, 1!0ㄹ, p. 90.

1. nitidus, A. M.-Edw. \& Bouv. 1899; ïd. ibill. pl. xviii.-S.E. cnast U.S.A.; Antilles.
2. perpusillus, Mary Rathbun, Bull. U.S. Fish. C'omm. ii. 1900, p. 90 Portn Rico.
S. Cymonomop:, Alcoch, 1894, ride J. A. S. B. lxv. pt. 2, 1aff, p. 2~f.
3. glaucomma, Alcock, 1894, ibid., and Ill. Zool. 'Investirator,' Crust. pl. xiv. tig. 9.-Andaman Sèa.

EXPLANATION OF PLATE IVIII.

Figg. 1. Cymonomus andamunicus, male; enlarred three times.
Fig. 1 a. The same; ventral view of anterior part of cephalothorax and carapace. showing the buccal cavern almost completely closed by the external maxillipeds and the absence of any afferent branchial opening between the carapace and the lase of the chelipeds: enlarged four tinnes.
Fig. l b. The same; end-on riew of the animal, showing the preat breatbing-opening between the front of the carapace and the anterior border of the external maxillipeds; enlarged fuur timues.

In concluding this paper I have to express my thanks to Professor E. L. Bourier for his kindness in sending me specimens of Cymonomus granulatus (Norman) for comparison with the new Andaman species.
LXXIX. - Observations on Coleoptera of the Family Buprestidæ, with Descriptions of new Species. By Chas. O. Waterhouse, F.E.S.
[Continued from vol. xiv. p. 343.]
Ayøocera Fenyesi, Kerr.
The type of this species is a rather small example of A. gentilis, Horn. The specimen labelled A. gentilis in Capt. Kerremans' collection is A. gigas.

Hypoprasis magnifica, Phil.

Capt. Kerremans gives this av a synonym of H. huipogn, Fairm. (Wytsman's 'Genera,' p. GT). I have not been able to see the description of this species, but the specimens received by the Museum with this name differ from H. harpago, Fairm., in haring the sides of the thorax coppery, and the posterior angles more rugosely punctured. The elytra are less acuminate. I think it is a distinct species.

Halecia soror, sp. n.
Fusco-rneous, shining. Head concave in front, and deeply longitudinally canaliculate; the clypus coppery.

